DETERMINATION OF COUPLING CONSTANTS OF NITROGEN IN AMINO GROUP OF NITROANILINES BY MEANS OF RELAXATION TIMES IN ROTATING FRAME

Vladimír MLYNÁRIK

Czechoslovak Institute of Metrology, 825 62 Bratislava

Received November 17th, 1981

One-bond coupling constants of amino nitrogen in 2-, 3- and 4-nitroanilines have been calculated on the basis of ¹H and ¹³C relaxation times in rotating frame (T_{10}) which are affected by interaction with rapidly relaxing ¹⁴N nucleus. A method has been suggested and tested for calculation of ¹⁴N-¹³C couplings with elimination of effects of other relaxation mechanisms. Dependence of ¹J(¹⁴N¹³C) on position of nitro group in the aromatic nucleus has been observed.

Measurement of nuclear relaxation times in rotating frame (spin-locking) represents an efficient method of study of slower exchange processes taking place in organic compounds. One of the mechanisms affecting the $T_{1\varrho}$ values is the spin coupling of the examined nucleus with a rapidly relaxing quadrupole nucleus. Contribution of relaxation of the quadrupole nucleus to the relaxation time $T_{1\varrho}$ of the examined nucleus in the molecule can be expressed in the form¹

$$(T_{10}^{\rm sc})^{-1} = 4(\pi J)^2 I(I+1) T_{11}/(3(1+\omega_1^2 T_{11}^2)), \qquad (1)$$

where J means the coupling constant of the examined nucleus with the quadrupole nucleus having a spin I; T_{11} means spin-lattice relaxation time of the quadrupole nucleus, and ω_1 is amplitude of the spin-locking field in the frequency units ($\omega_1 = \gamma B_1$). From Eq. (1) it follows that T_{10}^{sc} is directly proportional to ω_1^2 . From the slope of this straight line and from the value $T_{10}^{sc}(\omega_1^2 = 0)$ it is possible to evaluate the coupling constant J as well as the spin-lattice relaxation time of the quadrupole nucleus T_{11} . One of the important applications of this method is the determination of ^{14}N —H and ^{14}N — ^{13}C coupling constants which, in most cases, are only accessible indirectly from the ^{15}N interactions. In the present communication the said procedure is used for determination of the coupling constants in isomeric nitroanilines.

EXPERIMENTAL

2-, 3- and 4-nitroanilines were measured in 10 mm tubes as saturated solutions in hexadeuterioacetone. All the measurements were carried out on a JEOL FX-100 FT NMR spectrometer at 22° C. The spin-lattice relaxation times were obtained by the inversion recovery method. The relaxation times in rotating frame were measured by the pulse sequence described in ref.². Amplitude of the spin-locking field B₁ was determined by measuring the time needed for a 180° pulse. The signal intensities were determined from the spectra taken at 200 Hz (¹H) or 300-600 Hz (¹³C) spectral width using 2 048 data points. The ¹³C spectra were measured with the single frequency proton decoupling, external lithium lock being used. The ¹⁴N NMR spectra were recorded at 7·14 MHz with the proton noise decoupling. 8 192 data points, a spectral width of 10 kHz and 50 ms interval between pulses were used. The inaccuracy of the calculated ¹⁴N—H and ¹⁴N—¹³C coupling constants due to random error was about 2 and 0·5 Hz, respectively. The error in the relaxation times of nitrogen is 5 to 10%.

RESULTS AND DISCUSSION

The ¹H T_{10} measurements were used to study the one-bond ¹⁴N—H interactions in NH₂ group of 3- and 4-nitroanilines. In 2-nitroaniline the proton signal of amino group was overlapped by that of aromatic protons, and its intensity could not be determined reliably. Results of the measurements are given in Table I. Besides the spin coupling with ¹⁴N nucleus the relaxation times T_{10} are also affected by other relaxation mechanisms which are presumed to contribute equally¹ to both T_{10} and T_1 values. Comparison of these values reveals that the contribution of the coupling with ¹⁴N nucleus to the relaxation in the rotating frame is considerable, so that Eq. (2) can be used¹ for sufficiently accurate calculation of T_{10}^{se}

$$(T_{1\varrho}^{\rm sc})^{-1} = T_{1\varrho}^{-1} - T_{1}^{-1}, \qquad (2)$$

where the expression T_1^{-1} represents contribution of the other rapid relaxation processes to the overall relaxation in the rotating frame. The calculated coupling constants ${}^{1}J({}^{14}\text{NH})$ (Table I) agree well with the directly measured³ values ${}^{1}J({}^{15}\text{NH})$. For 3-nitroaniline the measured absolute value was ${}^{1}J({}^{15}\text{NH}) = 83.0 \text{ Hz}$, that for

TABLE I

¹H Relaxation times and calculated one-bond ¹⁴N-H coupling constants and ¹⁴N spin-lattice relaxation times in NH₂ group of nitroanilines

Compound	T ₁ s		<i>T</i> ₁	$^{1}J(^{14}NH)$	¹⁴ N T ₁				
		2 000	4 000	6 000	8 000	10 000	12 000	Hz	ms
3-NO ₂	1.75	41	87	160	250	345	460	61	0.41
4-NO ₂	1.81	39	78	148	245	310	450	65	0.43

Collection Czechoslovak Chem. Commun. [Vol. 48] [1983]

4-nitroaniline was 88.9 Hz, and recalculation with the use of gyromagnetic ratios gives the respective values ${}^{1}J({}^{14}NH) = 59.2$ Hz and 63.4 Hz.

The described method of T_{1e}^{sc} calculation cannot be used in the ¹³C measurements. The ¹J(¹⁴N¹³C) coupling constants are substantially smaller than ¹J(¹⁴NH), hence the contribution of the coupling with ¹⁴N nucleus to the overall relaxation of ¹³C nucleus in rotating frame is relatively small. Effects of other processes affecting T_1 and T_{1e} as well as those of systematical errors of the measurements cause that the T_{1e}^{sc} calculation via Eq. (2) is loaded with a large error. Therefore, in calculations of the ¹⁴N—¹³C couplings one of the unknown parameters present in Eq. (1), *i.e.* the relaxation time of ¹⁴N nucleus of amino group, was calculated independently from the ¹⁴N signal half width according⁴ to Eq. (3)

$$T_1 = T_2 = (\pi W_{1/2})^{-1}, \qquad (3)$$

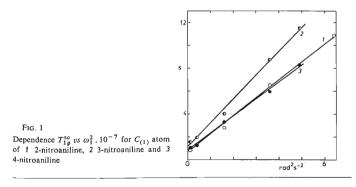
where T_1 and T_2 stand for the spin-lattice and spin-spin relaxation times of ¹⁴N nucleus, respectively, and $W_{1/2}$ means the ¹⁴N signal width at half height. The T_{1e}^{sc} values were expressed from the modified relation (2)

$$(T_{1\varrho}^{\rm sc})^{-1} = T_{1\varrho}^{-1} - (T_{1\varrho}')^{-1}, \qquad (4)$$

where the $(T'_{10})^{-1}$ constant independent of ω_1 represents all remaining contributions to relaxation in rotating frame. Its value was chosen in such way that the dependence $T_{16}^{sc} vs \omega_1^2$ according to Eq. (1) might give the relaxation time of ¹⁴N nucleus calculated from Eq. (3). The contribution of NO₂ nitrogen relaxation to the measured values

TABLE II

¹³C Relaxation times, ¹⁴N spin-spin relaxation times and calculated one-bond ¹⁴N—¹³C coupling constants for CNH₂ group in nitroanilines


Compound	T ₁ s	$T_{1\rho}(s)$ at ω_1 , rad s^{-1}					¹⁴ N T ₂	$^{1}J(^{14}N ^{13}C)$
	s	1 000	2 000	4 000	6 000	7 000	ms	Hz
2-NO ₂	34.5	0.80	1.25	2.40	4.65	6·5ª	0.50	10-9
3-NO2 ^b	2.78	0.90	1.00	1.35	1.65	1.73	0.44	8.9
4-NO2 ^b	3.01	0.70	0-81	1.30	1.57	1.70	0.43	10.5

^a At $\omega_1 = 8000$ rad s⁻¹. ^b With addition of chromium(III) acetylacetonate.

of T_{1p} is negligible because its relaxation time is relatively long and the couplings with the $C_{(1)}$ carbon are small.

Table II gives the relaxation times T_1 and $T_{1\varrho}$ measured at $C_{(1)}$ atom of the studied nitroanilines and those of amino nitrogen atom calculated from Eq. (3). The relaxation times of nitrogen atom calculated from the half width of signals agree (within the experimental error) with the spin-lattice relaxation times found from the ¹H $T_{1\varrho}$ measurements (Table I). Concentration of 2-nitroaniline solution was sufficiently high, so intensities of ¹³C signals could be read from the spectra measured at a single pulse. Concentration of 3- and 4-nitroaniline solutions was lower, and accumulation of spectra was necessary to obtain sufficient signal/noise ratio. To reduce the measurement time of the $T_{1\varrho}$ data, chromium(III) acetylacetonate was added to the two samples, whereby the spin-lattice relaxation time of $C_{(1)}$ atom was shortened to a value about 3 s. Although the addition of the relaxation reagent represents a further contribution to the ¹³C relaxation times, this contribution does not depend on ω_1 and is eliminated in the expression of T_{16}^{sc} by Eq. (4).

Fig. 1 gives the dependences T_{10}^{sc} vs ω_1^2 for the $C_{(1)}$ atom of the nitroanilines, Table II gives the calculated coupling constants ${}^{1}J({}^{14}N{}^{13}C)$. Agreement of the calculated coupling constant of 4-nitroaniline with the value ${}^{1}J({}^{15}N{}^{13}C) = 14.9$ Hz, *i.e.* ${}^{1}J({}^{14}N{}^{13}C) = 10.7$ Hz (measured with an ${}^{15}N$ -enriched sample⁵) confirms correctness of the chosen evaluation method. The high value of this coupling constant as compared with ${}^{1}J({}^{14}N{}^{13}C) = 8.2$ Hz found in aniline⁶ is explained by the increase of the N-C bond order of amino group caused by NO₂ substituent⁵. From comparison of the calculated ${}^{1}J({}^{14}N{}^{13}C)$ values it follows that the effect of nitro group is similar in 2-nitroaniline, whereas in 3-nitroaniline it is substantially weaker.

Collection Czechoslovak Chem. Commun. [Vol. 48] [1983]

REFERENCES

- 1. Strange J. H., Morgan R. E.: J. Phys. C: Solid St. Phys. 3, 1999 (1970).
- 2. Farrar T. C., Becker E. D.: Pulse and Fourier Transform NMR, p. 91. Academic Press, New York 1971.
- 3. Bramwell M. R., Randall E. W.: J. Chem. Soc., Chem. Commun. 1969, 250.
- Lehn J. M., Kintzinger J. P. in the book: *Nitrogen* NMR (M. Witanowski, G. A. Webb, Eds), p. 113. Plenum Press, London 1973.
- 5. Wasylishen R. E.: Can. J. Chem. 54, 833 (1976).
- 6. Hansen M., Jakobsen H. J.: Acta Chem. Scand. 26, 2151 (1972),

Translated by J. Panchartek.

988